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Intrapartum electronic fetal heart rate monitoring to
predict acidemia at birth with the use of deep learning
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BACKGROUND: Electronic fetal monitoring is used in most US hospital of the electronic fetal monitoring tracing. Of these, 21,041 were matched
births but has significant limitations in achieving its intended goal of

preventing intrapartum hypoxic-ischemic injury. Novel deep learning

techniques can improve complex data processing and pattern recognition

in medicine.

OBJECTIVE: This study aimed to apply deep learning approaches to

develop and validate a model to predict fetal acidemia from electronic fetal

monitoring data.

STUDY DESIGN: The database was created using intrapartum elec-

tronic fetal monitoring data from 2006 to 2020 from a large, multisite

academic health system. Data were divided into training and testing sets

with equal distribution of acidemic cases. Several different deep learning

architectures were explored. The primary outcome was umbilical artery

acidemia, which was investigated at 4 clinically meaningful thresholds:

7.20, 7.15, 7.10, and 7.05, along with base excess. The receiver oper-

ating characteristic curves were generated with the area under the

receiver operating characteristic assessed to determine the performance

of the models. External validation was performed using a publicly available

Czech database of electronic fetal monitoring data.

RESULTS: A total of 124,777 electronic fetal monitoring files were

available, of which 77,132 had<30% missingness in the last 60 minutes
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to a corresponding umbilical cord gas result, of which 10,182 were time-

stamped within 30 minutes of the last electronic fetal monitoring reading

and composed the final dataset. The prevalence rates of the outcomes in

the data were 20.9% with a pH of<7.2, 9.1% with a pH of<7.15, 3.3%

with a pH of <7.10, and 1.3% with a pH of <7.05. The best performing

model achieved an area under the receiver operating characteristic of 0.85

at a pH threshold of<7.05. When predicting the joint outcome of both pH

of <7.05 and base excess of less than �10 meq/L, an area under the

receiver operating characteristic of 0.89 was achieved. When predicting

both pH of<7.20 and base excess of less than�10 meq/L, an area under

the receiver operating characteristic of 0.87 was achieved. At a pH of

<7.15 and a positive predictive value of 30%, the model achieved a

sensitivity of 90% and a specificity of 48%.

CONCLUSION: The application of deep learning methods to intra-

partum electronic fetal monitoring analysis achieves promising perfor-

mance in predicting fetal acidemia. This technology could help improve the

accuracy and consistency of electronic fetal monitoring interpretation.
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Introduction
Electronic fetal monitoring (EFM) is
used in >85% of births in the United
States,1 to allow clinicians to detect
changes in the fetal heart rate that may
indicate academia, enabling them to
intervene before irreversible conse-
quences. EFM was disseminated into
practice before robust assessment of its
efficacy, and decades of work since have
shown the limitations of EFM in
achieving its intended goal of prevent-
ing intrapartum hypoxic-ischemic
injury.2e6 In addition, EFM use has
been shown to be associated with a
significant increase in obstetrical inter-
vention, especially cesarean delivery.6,7

Much work has been done to develop
guidelines and standardized frame-
works for EFM interpretation in the
hopes of improving both neonatal out-
comes and the precision of obstetrical
interventions.4,5,8 However, a large
2017 meta-analysis showed that
continuous EFM was associated with a
significantly increased risk of cesarean
delivery and operative vaginal delivery
but no reduction in perinatal death or
cerebral palsy.6 Subsequently, attempts
have been made to further refine the
visual features of EFM that may be
associated with fetal acidemia,9,10,11

whereas other studies have highlighted
the limitations of the correlation among
EFM patterns, umbilical artery pH, and
neonatal outcomes and questioned the
use of any further attempts to improve
EFM interpretation.12
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In response to many of these chal-
lenges, computerized interpretation of
EFM has been explored since the 1980s.
Unfortunately, existing software pro-
grams, which are largely designed to
detect the same EFM features as clini-
cians, have not demonstrated clinical
benefit in randomized controlled
trials.13e18 In recent years, artificial in-
telligence technologies have been
explored as a potential avenue to
improve EFM interpretation. Specif-
ically, deep learning, a subtype of ma-
chine learning, has significant appeal.
Deep learning techniques have shown
great promise in facilitating complex
data processing and pattern recognition
in medicine,19e22 and the application of
deep learning to the problem of EFM
interpretation has begun to be explored,
with some early retrospective research,
primarily performed using a single,
small dataset, showing promising test
characteristics for computer-generated
erican Journal of Obstetrics & Gynecology 1.e1
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Why was this study conducted?
Electronic fetal monitoring (EFM) is used in most US hospital births but has
substantial limitations in achieving its intended goal of preventing intrapartum
hypoxic-ischemic injury. Novel deep learning techniques may help improve the
accuracy and reliability of EFM interpretation.

Key findings
Deep learning models trained on a large multisite dataset of EFM tracings
exhibited promising accuracy in predicting acidemia in umbilical cord gas at
several different pH thresholds. A deep learning model exhibited an area under
the receiver operating characteristic curve of 0.85 at a pH threshold of<7.05. At a
pH of<7.15 and aminimum positive predictive value of 30%, themodel achieved
a sensitivity of 90% and a specificity of 48%.

What does this add to what is known?
The application of deep learning methods to intrapartum EFM analysis achieves
promising performance in predicting fetal acidemia. This technology could help
improve the accuracy and consistency of EFM interpretation.
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algorithms.19,23e29 As opposed to
analyzing visually identifiable EFM pat-
terns, similar to those that clinicians
visually interpret, deep learning relies on
an entirely data-driven approach.

Our overarching hypothesis is that
novel, data-driven deep learning ap-
proaches can detect meaningful data
patterns in EFM, beyond those features
that clinicians or other software pro-
grams recognize, that could help
improve the predictive accuracy of EFM.
Accordingly, we sought to develop and
externally validate an algorithm that can
use EFM data to predict fetal acidemia
using deep learning data analysis
techniques.

Materials and Methods
Database creation
The EFM database was created by
accessing the intrapartum EFM data files
stored for all deliveries in a large,
multisite academic health system (Uni-
versity of Pennsylvania Health System)
from January 1, 2006, to December 31,
2020. The EFM files were matched to a
maternal medical record number and a
corresponding umbilical artery labora-
tory result to ensure that each EFM strip
corresponded to a distinct patient. We
included only those tracings with EFM
data available for at least the last 60 mi-
nutes before delivery and an arterial
1.e2 American Journal of Obstetrics & Gynecology
umbilical cord gas result, with a labora-
tory order time stampwithin 30 minutes
of the end of the fetal heart rate tracing.
For this initial analysis, patients were
excluded if there was>30% missingness
in the EFM data in the last 60 minutes.
Patients with 2 or more umbilical cord
gas laboratory results with the same time
stamp were excluded as a proxy for
multiple pregnancies. Limited additional
clinical and demographic data were
abstracted from the medical records
system and matched using the patients’
medical records. A random sample of
200 medical records was selected for
manual review to confirm the accuracy
of the data abstraction process. The
primary outcome was fetal acidemia, as
determined by umbilical artery pH,
which we investigated as a binary
outcome at 4 clinically meaningful
thresholds: 7.05, 7.10, 7.15, and 7.20. To
more specifically capture fetal metabolic
acidemia, we performed additional an-
alyses with a joint outcome of umbilical
artery pH and base excess.

Data preprocessing
Data preprocessing was performed to
remove outliers, noise, and artifact from
the EFM data. Extremes of a fetal heart
rate of<50 or>200 bpmwere excluded.
Thresholds of beat-to-beat variation
were established, with a>25 beat change
MONTH 2024
in 1 second considered to be likely arti-
fact and removed. The 4-Hz raw signal
was smoothed and down-sampled to
0.25 Hz, mirroring previous work.25,26

Deep learning analysis
To train and evaluate deep learning
models, we divided the data into 75%
training and 25% test sets. The training
set was subdivided during model fitting
into 80/20 train and validation sets,
with validation used to select the final
model, for each architecture and over-
all. We used the Adam optimizer30 with
an adaptive learning rate31 and trained
for 100 epochs. Of note, 6 deep learning
architectures were tested, including
convolutional neural networks
(CNNs), fully connected CNNs
(FCNs),32 long short-term memories
(LSTMs), multiscale CNNs (CNN-
MS),33 a variant of residual networks
called InceptionTime,34 and Trans-
formers.35 The CNN and LSTM archi-
tectures were chosen to match those
developed in previous work.25 CNN-
MS, FCN, and InceptionTime were
chosen for their state-of-the-art per-
formance on cross-domain time series
classification benchmarks.32,34 Trans-
formers were included because of their
breakout performance in recent years
on natural language and sequence
learning tasks.35 Each architecture was
trained 10 times with different random
seeds and shuffles of the training and
validation data.

Evaluating model performance
Receiver operating characteristic (ROC)
curves were generated for the models at
different pH thresholds. The median
area under the receiver operating char-
acteristic (AUROC) curve and 95%
confidence intervals (CIs) were assessed.
The number of parameters in each
model was assessed to determine its ef-
ficiency. Internal AUROC curve valida-
tion was performed at each pH threshold
to identify the best final model. For the
final model, sensitivity, specificity, posi-
tive predictive value (PPV), and negative
predictive value (NPV) were assessed at
classification thresholds targeting a
sensitivity or specificity of 80% or a set
minimumPPV, determined based on the
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assessment of each model’s area under
the precision-recall curve.

External validation of model
The model with the best internal vali-
dation AUROC curve was chosen for
external validation. External validation
was performed using a publicly available
database from the Czech Republic,
known as CTU-UHB.24 This database
consists of 552 patients at >37 weeks of
gestation with fetal monitoring data
paired with cord gas pH results. They
excluded multiple pregnancies or pa-
tients with known congenital anomalies
or fetal growth restriction and enriched
the dataset for cesarean deliveries and
fetal acidemia, resulting in an elevated
prevalence of 7.2% for a pH of <7.05.
We externally validated our model with
and without fine-tuning to account for
this difference in prevalence. In the
former scenario, the model was evalu-
ated directly on the 552 cases; in the
latter scenario, the final model was
trained for an additional 100 epochs on a
FIGURE 1
Flowchart of database creation

EFM, electronic fetal monitoring.
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randomly chosen 50% set of patients
from CTU-UHB and then evaluated on
the remaining cases.
The code developed to preprocess the

datasets, train the models, and evaluate
performance is available at https://
github.com/cavalab/ai-efm.

Results
The database creation is shown in
Figure 1. A total of 124,777 fetal moni-
toring files were available, of which
77,132 had<30%missingness in the last
60 minutes of the EFM tracing. Of these,
21,041 were matched to a corresponding
umbilical cord gas result, 10,182 of
which were time-stamped within 30
minutes of the last EFM reading. This
composed the final dataset for analysis.
Of this final dataset of 10,182 tracings,
7644 (75%) were assigned to the training
set, and 2549 (25%) were assigned to the
testing set. Figure 2 shows the distribu-
tion of umbilical artery pH in the data-
set, with most values>7.20, as expected.
The prevalence rates of the outcomes of
ynecol 2024.
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acidemia on umbilical artery pH were
20.9% with a pH of <7.2, 9.1% with a
pH of <7.15, 3.3% with a pH of <7.10,
and 1.3% with a pH of <7.05. The me-
dian maternal age was 28.0 years (inter-
quartile range [IQR], 23.0e32.0), and
the median gestational age at delivery
was 39.3 weeks (IQR, 38.3e40.1). Pa-
tients were 62.8% Black, 19.3% White,
7.3% Asian, 4.4% Hispanic or Latino,
0.7% East Indian, and 5.6% other or
unknown.

The test set AUROC curve values for
each of the tested deep learning ap-
proaches are shown in the Supplemental
Table (Supplemental Figure). The results
of the best-performing model type (as
determined by AUROC curve valida-
tion), known as InceptionTime, are
shown in Table 1 along with the perfor-
mance of the model on test data in pre-
dicting the pH outcome and the joint
outcome of pH and base excess. The
accompanying ROC curves for the
models are shown in Figure 3. At a pH
threshold of 7.05, the model achieved an
erican Journal of Obstetrics & Gynecology 1.e3
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FIGURE 2
Distribution of umbilical cord gas pH across the dataset (n[10,182)

The red line and axis show the cumulative distribution.

McCoy. Deep learning to predict fetal acidemia. Am J Obstet Gynecol 2024.
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AUROC of 0.85. When predicting the
joint outcome of both pH of <7.05 and
base excess of less than �10 meq/L, an
AUROC curve of 0.89 was achieved. At a
pH threshold of 7.20, the model ach-
ieved an AUROC curve of 0.75. When
predicting both pH of <7.20 and base
excess of less than �10 meq/L, an
AUROC curve of 0.87 was achieved.
Next, we assessed the performance of the
models when setting sensitivity, speci-
ficity, and PPV targets. The PPV set
TABLE 1
Performance of final models for predic

Outcome predicted

pH<7.05

pH<7.05 and base excess of less than �10 me

pH<7.10

pH<7.10 and base excess of less than �10 me

pH<7.15

pH<7.15 and base excess of less than �10 me

pH<7.20

pH<7.20 and base excess of less than �10 me

Along with AUROC and AUPRC predictions on patients with spec
range) over 1000 bootstrap resamples of the test data.

AUPRC, area under the precision-recall curve; AUROC, area und

McCoy. Deep learning to predict fetal acidemia. Am J Obste
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points ranged from 10% to 50%,
increasing as the prevalence of the
outcome increased (Table 2). At a pH of
<7.15 and a PPV of 30%, the model
achieved a sensitivity of 90% and a
specificity of 48%.
Finally, we externally validated our

model using the publicly available CTU-
UHB database.24 On this dataset, our
model exhibited similar performance,
predicting a pH of<7.05 and an AUROC
curve of 0.72 without additional
tions of umbilical artery pH and combine

AUROC AUPRC

0.85 (0.83e0.87) 0.12 (0

q/L 0.89 (0.87e0.92) 0.13 (0

0.83 (0.81e0.84) 0.17 (0

q/L 0.88 (0.87e0.9) 0.13 (0

0.79 (0.78e0.8) 0.28 (0

q/L 0.87 (0.85e0.88) 0.15 (0

0.75 (0.74e0.75) 0.44 (0

q/L 0.87 (0.86e0.89) 0.17 (0

ified levels of pH and base excess, the outcome prevalence in the test

er the receiver operating characteristic.

t Gynecol 2024.

MONTH 2024
training. With additional training and
fine-tuning on a subset of CTU-UHB
data, the model’s performance
increased (AUROC curve of 0.76).

Discussion
Principal findings
We demonstrated that, in a large, multi-
center clinical database, deep learning
methods applied to intrapartum EFM
analysis achieve promising performance
in predicting fetal acidemia. By offering a
d prediction of pH and base excess

Outcome rate

.09e0.16) 0.013 (0.012e0.015)

.08e0.18) 0.008 (0.007e0.009)

.15e0.20) 0.033 (0.030e0.035)

.10e0.16) 0.013 (0.011e0.014)

.27e0.30) 0.090 (0.087e0.094)

.12e0.17) 0.018 (0.016e0.019)

.42e0.45) 0.210 (0.205e0.215)

.14e0.20) 0.020 (0.018e0.022)

set is provided. Data are presented as median (interquartile
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FIGURE 3
Receiver operating characteristic curves for the final deep learning models

From left to right, the pH threshold for classifying fetal acidemia increases from 7.05 to 7.10, 7.15, and 7.20. The shaded area indicates the 95%
confidence interval.

McCoy. Deep learning to predict fetal acidemia. Am J Obstet Gynecol 2024.
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data-driven approach, this technology
has the potential to augment the clinical
interpretation of EFM. Future work will
seek to assess whether this tool can help
improve the accuracy and consistency of
EFM interpretation.

Results in the context of what is
known
Of note, 2 authors have recently sum-
marized the existing work applying
TABLE 2
Performance of final models

pH threshold AUROC AUPRC Operating ta

7.05 0.85 0.13 Sensitivity ¼
Specificity ¼
PPV ¼ 0.1

7.1 0.81 0.16 Sensitivity ¼
Specificity ¼
PPV ¼ 0.2

7.15 0.79 0.29 Sensitivity ¼
Specificity ¼
PPV ¼ 0.3

7.2 0.75 0.44 Sensitivity ¼
Specificity ¼
PPV ¼ 0.5

Sensitivity, specificity, and PPV are reported at classification th
minimum PPV based on assessment of each model’s AUPRC.

AUPRC, area under the precision-recall curve; AUROC, area und
dictive value; PPV, positive predictive value.

McCoy. Deep learning to predict fetal acidemia. Am J Obste
machine learning or deep learning
techniques to EFM analysis.36,37Much of
the existing work has used the small,
publicly available single-center database
from the Czech Republic of 552 cases of
highly curated fetal monitoring data
known as CTU-UHB.24 Ogasawara
et al27 used a small, case-control dataset
of 384 patients and experimented with
several different deep learning models to
predict the outcomes of the 1-minute
rget Sensitivity Specificity PPV NPV

0.8 0.79 0.78 0.05 1.00

0.8 0.76 0.80 0.04 1.00

0.97 0.26 0.10 1.00

0.8 0.81 0.65 0.11 0.99

0.8 0.71 0.80 0.07 0.99

0.93 0.33 0.20 0.99

0.8 0.80 0.62 0.26 0.97

0.8 0.65 0.80 0.17 0.96

0.90 0.48 0.30 0.98

0.8 0.80 0.54 0.43 0.91

0.8 0.56 0.80 0.32 0.87

0.88 0.39 0.50 0.92

resholds that target a sensitivity or specificity of 80% or a

er the receiver operating characteristic; NPV, negative pre-

t Gynecol 2024.
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Apgar score and pH of <7.20. They
achieved AUROC curves ranging from
0.62 to 0.73.27 Fergus et al38 used the 552
tracings in the CTU-UHB database to
develop CNN models, achieving an
AUROC curve of 0.86. In addition, Zhao
et al,28 using CTU-UHB, experimented
with CNN models, achieving AUROC
curves as high as 0.98. The robustness
and clinical applicability of each of these
studies are significantly limited by the
small, highly curated nature of the
dataset used. Petrozziello et al25 used a
database of 35,429 deliveries at >36
weeks of gestation, with a 4.5% preva-
lence of their primary outcome of either
a pH of<7.05 or a “severe compromise.”
They analyzed the last hour of EFM (at
0.25 Hz) and developed a CNN deep
learning model that achieved a sensi-
tivity of 42% and an AUROC curve of
0.68.25 In our work, at a pH of <7.05,
our final model exhibited a substantially
higher AUROC curve of 0.85, out-
performing the previous best CNN and
LSTM architectures from Petrozziello
et al.25 Our work is a notable advance-
ment of these previous efforts in that we
created and used a large, clinically real-
istic dataset, and developed model ar-
chitectures that demonstrate better
performance.

Concerning previous literature
assessing the performance of clinician
interpretation of EFM to predict acid-
emia, many efforts have been made over
recent decades to standardize and
erican Journal of Obstetrics & Gynecology 1.e5
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optimize visual interpretation of
EFM.4,5,8 Cahill et al9 conducted a pro-
spective cohort study to assess the per-
formance of both standard Eunice
Kennedy Shriver National Institute of
Child Health and Human Development
criteria and more complex visually
interpreted features of EFM, in the 120
minutes before delivery in predicting
cord blood acidemia of <7.10, with a
maximum AUROC curve of 0.77, sen-
sitivities ranging from 63% to 73%,
specificities of 44% to 78%, and PPVs of
2% to 4%. In contrast, our final model
exhibited better discriminative perfor-
mance at this pH threshold (AUROC
curve of 0.81), with a PPVof 11% at 80%
sensitivity and 65% specificity. Another
study assessing the performance of visual
interpretation of the last 30 minutes of
EFM in predicting acidemia demon-
strated high specificity of certain visual
features but very low sensitivities and
PPVs ranging from 0.0% to 3.4%.10 In
studies of EFM interpretation in clinical
practice, a large Cochrane database
meta-analysis found that continuous
EFM during labor did not significantly
reduce the risk of cord blood acidosis at
delivery (risk ratio, 0.92; 95% CI,
0.27e3.11).6 Other studies have shown
that the sensitivity of EFM interpretation
for predicting acidemia in actual clinical
practice ranges from 30% to 45% and
that fewer than 15% of neonates deliv-
ered via cesarean delivery for the indi-
cation of nonreassuring fetal heart tones
are found to have acidemia at delivery.39

Compared with these previous assess-
ments, the performance of our models
suggests a meaningful improvement in
sensitivity and PPV while maintaining
adequate specificity.

Research implications
This work is an essential step in the
research needed to understand how to
best harness the power of artificial in-
telligence to improve the interpretation
of EFM. These initial results provide
proof of concept that a purely data-
driven model can achieve promising
predictive performance. The database
and the models developed in this work
can now be used to compare the
1.e6 American Journal of Obstetrics & Gynecology
performance of the deep learning model
with expert clinician interpretation,
which is a work that is underway. In
addition, future research will seek to
identify whether there are particular
types of tracings or subsets of patients in
whom the model’s performance may be
most useful to enhance clinical decision-
making and to begin to test the perfor-
mance of the model prospectively.
In addition to advancing important

clinical research on improving EFM
interpretation, our work contributes to
the practice of machine learning for time
series model development. Our results
suggest that deep learning approaches
that model the local frequency content of
signals at various time scales (eg, CNN-
MS and InceptionTime) perform well
for EFM analysis and acidemia predic-
tion. Both architectures allow themodels
to learn nonlinear features that span
local (ie, a few seconds) and global scales
(ie, several minutes). Moreover, the re-
sults suggest that CNN-based architec-
tures are preferable over autoregressive
approaches, such as LSTMs and Trans-
formers, not to mention faster to train.
Transformers exhibited poor perfor-
mance on this task, contributing to a
growing body of work suggesting
fundamental limitations that need to be
addressed with this architecture if its
promise is to be realized for time series
classification.40

Clinical implications
Although umbilical artery acidemia as
an outcomemeasure has limitations, it is
a clinically relevant outcome and affects
important neonatal care decisions. Um-
bilical artery acidemia as measured by
pH has been consistently shown to be
associated with neonatal morbidity,41,42

with a large 2010 meta-analysis finding
an odds ratio for hypoxic-ischemic en-
cephalopathy (HIE) of 13.8.42 Accord-
ingly, umbilical artery acidemia is used
to determine the need for neonatal
therapeutic hypothermia treatment
when there is concern for HIE.43

Although we hope to expand these
models to predict other clinical out-
comes, including Apgar score and HIE,
in future work, our results demonstrate
MONTH 2024
significant promise. A future decision
support model could be integrated into
clinical care to help bolster the capacity
of clinicians to accurately identify fetal
acidemia to help better focus obstetrical
intervention on true cases of acidemia.
Such a model could also help improve
interrater and intrarater reliability in
EFM interpretation and reduce in-
consistencies and cognitive biases in
clinical management.6 Furthermore, a
model that is appropriately and contin-
uously adjusted to remove biases could
play a pivotal role in mitigating health-
care disparities and health outcome in-
equities. Although much further work is
needed to move this technology toward
clinical application and to rigorously
evaluate its potential clinical effect, it
holds substantial promise to help
improve intrapartum care for laboring
patients.

Strengths and limitations
This study contributes to our under-
standing of state-of-the-art deep
learning approaches for time series
classification and their potential for
improving intrapartum EFM analysis. In
particular, we have established the per-
formances of several contemporary
model architectures concerning several
clinically important thresholds for acid-
emia that had not been systematically
explored in previous studies. The mul-
ticentered nature and size of our study
help strengthen its generalizability to
other obstetrical populations. Further-
more, most clinical sites represented in
our database employ a policy of universal
umbilical cord gas collection, as opposed
to selective collection at provider
discretion, ensuring that our database is
more representative of a general laboring
population.

This study did not explore the sensi-
tivity of the results to additional experi-
mental design variables, including
sampling rate, laboratory order delay
threshold, missingness threshold, pre-
diction horizon, and training window.
Future studies could illuminate the effect
of these choices on the efficacy of models
more broadly. In addition, we did not
consider other formulations of the
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prediction task, such as in regression
settings or ordinal classification of the
pH outcome variable. It is possible that
other formulations would result in more
clinically impactful models. Further-
more, there are limitations to both the
EFM data and umbilical cord pH as an
outcome that are important to
acknowledge. Umbilical cord pH is an
imperfect measure of intrapartum hyp-
oxia, and there are limitations to its
correlation with other short- and long-
term neonatal outcomes.9,39,44 More-
over, umbilical cord pHmay not capture
other nonhypoxic causes of fetal
compromise. We also acknowledge the
risk of potential confounding in the EFM
data by possible recording of maternal
heart rate at times by the EFM and the
fact that models built using the US
standard EFM tracing speed of 3 cm/
minutemay not be generalizable to other
practice settings that use different tracing
speeds.

Conclusions
Through exploration of several novel
deep learning approaches, we have
created, and both internally and exter-
nally validated, a deep learning model
that demonstrated promising perfor-
mance in predicting fetal acidemia.
Further development of this technology
has the potential to improve the accu-
racy and consistency of EFM
interpretation. n
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SUPPLEMENTAL FIGURE
Performance of different deep learning models

Receiver operator characteristic curves (top panel) and precision-recall curves (bottom panel). From left to right, the pH threshold for classifying fetal
distress increases from 7.05 to 7.10, 7.15, and 7.20.
CNN, convolutional neural network; CNN-MS, multiscale convolutional neural network; FCN, fully connected network; LSTM, long short-term memory; ResNet, residual neural network.

McCoy. Deep learning to predict fetal acidemia. Am J Obstet Gynecol 2024.

SUPPLEMENTAL TABLE
Median test set AUROC curve performance for various deep learning models and pH thresholds

Algorithm No. of parameters

AUROC at pH threshold

7.05 7.1 7.15 7.2

InceptionTime 492,000 0.85 (0.83e0.87)a 0.81 (0.79e0.83)a 0.79 (0.78e0.80)a 0.75 (0.74e0.75)a

CNN-MS 44,000 0.78 (0.75e0.80) 0.80 (0.79e0.82) 0.79 (0.78e0.80)a 0.72 (0.72e0.73)

ResNet 6,000,000 0.78 (0.75e0.81) 0.81 (0.79e0.82)a 0.76 (0.75e0.77) 0.73 (0.72e0.74)

CNN 267,000 0.64 (0.60e0.68) 0.67 (0.66e0.69) 0.62 (0.61e0.63) 0.60 (0.59e0.61)

FCN 405,000 0.52 (0.49e0.56) 0.63 (0.61e0.65) 0.63 (0.62e0.64) 0.61 (0.60e0.62)

LSTM 12,000 0.62 (0.58e0.65) 0.61 (0.59e0.63) 0.59 (0.58e0.61) 0.56 (0.55e0.57)

Transformer 161,000 0.66 (0.56e0.75) 0.54 (0.47e0.60) 0.54 (0.50e0.58) 0.55 (0.52e0.58)

Each algorithm was trained with 10 random seed initializations, and the best performance on an internal validation set was used to choose the final model. Statistics are calculated via 1000 bootstrap
resamples of test set performance.

AUROC, area under receiver operating characteristic.

a Indicates the best median AUROC scores among the algorithms at each pH threshold.

McCoy. Deep learning to predict fetal acidemia. Am J Obstet Gynecol 2024.
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